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Berry's phase and acoustic modes in the presence of an 
edge dislocation 

E M Serebrjany 
Physics Department, Dniepropetrovsk State University, 72 Gagarin Avenue. 320 625 
Dniepropetrovsk, USSR 
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Abstract. Acoustic phonon modes in the presence of an edge dislocation in a simple cubic 
lattice are computed by means of the covering space technique. Berry's phase and the 
associated topological interaction for the phonon propagating an this background give rise 
to a rather unconventional normal mode consisting of the standing wave (if any) and a 
necessary vibrating tail located on a glide plane 9 of the defect. 

1. Introduction 

The aim of this paper is two-fold. 
Firstly we show that a non-trivial topological background in the form of a linear 

defect contributes to the phonon defect interaction which is additional to the conven- 
tional one (Lifshits and Kosevitch 1966, Maradudin 1970, Ninomiya 1970). We call it 
'topological' as the topological or Berry's phase (Berry 1984) is responsible for the 
effect. Thus, we enlarge the family of problems where topology effects the behaviour 
of elementary excitations (see Avron et nl 1988). 

The other aim of this article is to demonstrate the covering space technique which 
is particularly useful when solving this type of problem. The typical structure involved 
is what may be called a singular G-bundle N &  9 over the two-dimensional base 9 
isomorphic to a plane R 2  with r points removed: 93 = R'\u, Pj ( i  = I ,  2 . .  . r ) .  The 
bundle curvature is the distribution located at points 9;. It manifests itself in the 
external part of the space due to the non-trivial holonomy group @. For evident reasons 
we call this space an r-polycone and denote it by W(G, r ) .  The particular type of such 
spaces with cone-like singularities were discussed in Scott (1983) as orbifolds. A 
complete three-dimensional space A4 may be obtqined as the product A = R' x 93, 
Then the points ?Pi transform into parallel straight lines, called flux tubes for G = U(1) 
and line defects for some other groups. When r = 1 we use the simplified notation 
W(G) for the cone. The parallel transport of the field '€' along the closed path encircling 
the defect induces the discrete holonomy group transformation 

1 r  . . . .  \ A 

h = e x p \ i  w ' 4 J ~ i ) ' € '  h E @ ,  i =  1 .2 .3 .  (1) 

Here are the closed connection one-forms and ti are generators of the relevant 
representation. As is well known, a non-trivial holonomy group may lead to the 
diffraction of the Y-wave by the defect. 
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The idea is to continue the initial equation from the space V = R ' x  %(G, I) onto 
the covering space ? A  V which has the monodromy group XJ2 isomorphic to a 
holonomy group @ of A. As is well known from Riemann, this is achieved by taking 
points of ? to be pair: point of V and the holonomy transformations corresponding 
to closed paths starting at this point. Thus, encircling the cone apex on V one transfers 
to another sheet of the branched Riemann surface T. On V the topological interaction 
(TI) term in the phonon wave equation may be gauged by means of the unitary 
iransiurmaiiuii ...-..-.._.I :.- 

Of course, it may turn out that to compute modes @ on ? is not more simpler than 
those for V. Indeed, problems are just shifted from one place to another for the 
holonomy of V i s  recoded into the monodromy of ?. The point is that groups @ which 
have different geometrical origin may be isomorphic to the same substitution group 
Dl of 9. So the covering space technique allows one to  alalyse various problems in 
an elegant and systematic way. Having the solution 'P on V we obtain the solution 'P 
on V as the automorphic projection 

All this is quite familiar to mathematicians. The study of various applications was 
undertaken by Dowker and collaborators (Banach and Dowker 1979, Dowker 1990, 
and references therein; see also Hart 1983). 

There are a number of cone-like structures pertinent to physics. The 'textbook' 
example is the %(U(l)) cone in the celebrated Aharonov-Bohm effect (for a review 

of the extemal part of the space around the cosmic string (Israel 1977, Vilenkin 1985). 
In condensed matter physics the %(G) cone (G is the subgroup of the semisimple 
product SO(3)D T(3)) describes the geometrical structure of the deformed elastic 
continuum in the presence of a linear defect (Bilby et al 1955, KadiE and Edelen, 1983). 

During the last decade a great deal of attention was paid to the study of the problem 
with elementary excitations propagating on a topologically non-trivial background, 
including that of a cone. The existence of the TI between the free electrons propagating 
through the crystal and the screw dislocation was recognized quite a long time ago 
(see references in Bird and Preston (1988)). Its importance for the correct description 
of metal conductivity was conjectured by Kawamura. He computed the scattering 
amplitude by the screw dislocation for the conductivity electrons both in a continuum 
(Kawamura 1978a) and on a lattice (Kawamura 1978b). The diffraction pattern for 
the free electrons scattered by the screw dislocation in graphite was obtained recently 
(Bird and Preston 1988). This also gives indirect support for Kawamura's conjecture. 

It is evident that if electrons moving in R' feel the non-trivial geometry of the 
dislocated lattice (=V) then one has to account for this when describing phonons 
moving just in V. The physical consequences of this fact were discussed by the present 
author (Serebrjany 1990). In that article the spectral density of the energy loss due to 
the sound radiation by the homogeneously moving source in the presence of the screw 
dislocation or disclination was computed. The wave equation for this background may 
be solved directly due to the high symmetry of the problem. This is not the case for 
the edge dislocation where the holonomy transformation is the translation normal to 
a defect line. The corresponding Schrodinger equation for the electrons was character- 
ized in Kawamura (1978a) as 'intractable'. However, it is tractable by means of the 

see Olariu and Popescn ! 9 R 5 ) :  Later, R' x %@0(2))  appearedasthe mode! for geometry 
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covering space technique mentioned above. Now we show how all this works for the 
dislocation. 

2. Phonon modes: general formulae 

we soive the equation 
.. . 

-w2u  = v:[Eu+v7"]+ (v:-zV:)vG (3) 
for the continuous version of the simple cubic lattice. Here linked vectors are contracted, 
V, and V, are transverse and longitudinal sound velocities correspondingly, u ( x )  is 
the phonon field. Components of the gradient operator V are duals of the form @Ii', 

wnicn LII ~ucai Gancsian cuoruinaies x- may oe wnrren as foilowsf ... L:.L ._ ,--.a ,.._.-I._ .... . . I  I~~ 

(S;+JU:,/JX') dx' ( i ,  j =  1,2,3) .  (4) w l o =  

u,,(x)= b4/2a+8u.,(x). ( 5 )  

x-x+u,,(x). (6) 

They are induced by the static displacement field 

T h ~ s  eqcztion (3) is ob!einec! from the 'flzt' nne by the cnc?rdinz!e !rznsfn-.a!inn 

The angle 4 in equation ( 5 )  changes by  2a when one traces the closed contour 
encircling the defect. The second term is zero for the screw dislocation, and for the 
edge dislocation placed along the z-axis of the cylindrical coordinate frame (2, p, 4)  
it reads (Landau and Lifshitz 1988) 

8u,,(r) = 8u'x'e, + 8u'y'e, 

sin 4 cos 4 b 
SUI"'= 

4 a ( l - u )  (7) 

[(I - 2 u )  In p + cos2 41, b 
4 a (  1 -U) 

The Burgers vector b = be, is supposed to be directed along the x-axis. The first term 
in equation ( 5 )  is universal in that it is independent (in contrast to the second one) 
on the particular elastic properties of the media.(Poisson ratio U). This term is 
responsible for the TI in question. Indeed, the shift 4- 4 + 2 a  results in the translation 

(S j 
This leads to the holonomy representation transformation (discrete subgroup of T( 1)) 
for any physical field 9 on such a background. Thus the map (6) from the homogeneous 
to a dislocated state has to be viewed as the map from R2 to the W(T(1)) cone and 
so it carries the standard 'flat' acoustic wave equation to R'X W(T(1)). In its turn this 
means that the solution to equation (3) could not be obtained merely by the coordinate 
transformation of the 'flat' solution. The obstacle is the curvature of the T(3j bundle 
located on the defect line. 

From equations (4), ( 5 )  and (7)  it is clear that the wave operator in equation (3) 
may be naturally continued as periodic onto the Y = RI xi! where 2 is the branched 
Riemannian surface of the complex logarithm with monodromy isomorphic to the 
additive group of pure numbers: W - Z .  On ? there is no periodicity condition on 

U,, cf y, + il. 



'S , (P )=  

e,, = [ep x e,]/sin 0 eT2=[epx[ep~eZ]] / s in  0 
(13) 

eL= e, =p/IpI 

cos 0 = e,e, n ,  
eL= [eTI x 4. 

(pLVL/2iw)J,-,(L) (1/2)Jp-l(73 (kb/2iw)JF-dT) 
(iPLVL/2w)J,,+,(L) (1/2)Jw+dT) (ikVT/2w)Jw+dT) (11) 

(kVL/w)J,(L) 0 (kPT vT/ )I+ ( 

Now we briefly discuss the boundary condition on the defect line p = 0. Normally 
when dealing with the string model of a defect a physically natural regularity condition 
is imposed. In Serebrjany (1991) it was shown that generally this is not possible. For 
the screw dislocation there are at least two singular phonon vector modes (i.e. modes 
possessing if only one singular component) with quantized orbital momentum. These 
modes give an imppriant contribution to the scattering matrix leading to polarization 
transmutations for tPe phonon scattered by the defect. Referring to that paper for 
details we note that'in order not to destroy the longitudinal or transverse nature of 
the solution one is forced to keep in [he present problem the whole family of singular 
modes. All of them are parametrized by the orbital momentum p taking on values 
such that lplc 1. 

As is evident from equation (11) the building block for the free modes on * is 

s=O*l  P>O P = PL or PT. 

To perform the map (9J we have to use the local Cartesian coordinates (x.y) which 
cover just one leaf of Y. We then use 
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This formula allows one to perform computations for positive y. The corresponding 
result for y < O  may he obtained by the phase shift in accordance with equation (15). 
Applying equation (9) to equation (14) one has to transform appropriately each vector 
mode. The new reference frame a,. and the old one a, are related by the position- 
dependent matrix JX/JX' which is single valued just in +/XR due to the linearity of x' 
in $. So the essential informaiion is stored in the scalar-transformed expression (14). 
I t  reads for y > 0 

5= x +  b$/27r+ Su'"'(x, y )  7 = y + Su'."'(x, y )  > 0. 

Encircling the defect line anticlockwise we find that equation (16) acquires the phase 
multiple exp(2vip) and the argument 6 will be shifted by the Burgers vector b. This 
new function also gives a solution to the wave equation (3) on 9 for the wave operator 
was continued on $ periodically. It follows that one may build up a new solution 
E(c, 7 )  periodic on the quotient space $/XI? 

Zu((, 7 ) = ~ e x p ( 2 n i p n ) ~ : , ( 5 + b n ,  7). (17) 
n 

TL:. :. .L. L:. c..- ._~~.A!.~. 
I um IS in< aururnorpr~ piujccriori i ~ ~ u ~ i i  cquauon (2). ijsing ihe Poisson suiiiriiaiion 
formula we arrive at the final expression 

1 - =,At, 7) =%I exp[-Zni(n +pL)5/bll,[2a(p+n)/bP, N,  +'I (18) 

where 

3. Explieit results and discussion 

The integral (19) is the key quantity we have to compute. Its most important property 
is the threshold behaviour in the parameter a. The asymptotic expression when 1 U I  m 
depends crucially on whether a exceeds 1 or  not. The asymptotic form of expression 
(19) when U- m is as follows: 

-texp(-i?rl*./2)k(a, P, U )  

=sin n(p+s /2)exp(-p8-us inh  B)/sinh 8 

(for a < -1: /a1 =cosh 8,0< O<m) 

=sin(m/2)exp(p8-u  sinh 8)lsinh 8 

(for a > 1: a = cosh 8,0< B<m) 

= -cos(u sin O-pO-ns/2)/sin 8 

(for (Y =cos e, O <  8 < P). 

So that for a > 1 the asymptotic falls off exponentially, otherwise it shows oscillating 
behaviour. Accounting for the explicit form a = 2 d n  + p)/Pb where (for the acoustic 
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phonons) Pb<< 1 one finds that in the sum (18) the oscillating contributions survive if 
-p  lies near some pure number n: n - E < - p  < n + E ,  E Pb << 1. So just one term in 
equation (17) may be oscillating when p is 'almost' quantized. The oscillating term 
(if any) is accompanied by the vibrating one located on the glide plane 9 stretched 
on a pair (ez, b ) .  The vibrating tail is represented by the infinite sum with terms 
decreasing exponentially both as functions of variable U and number n. 

It is interesting to note that for s = 0 the formulae above are exact. This can be 
shown by means of the Lambe generalization of the Shlafli integral representation for 
the Bessel functions (Bateman and Erdelyi 1953). The expression (20a )  is evidently 
the vibration contribution mentioned above and (20b) gives rise to the standing wave. 
From equation (18) one may infer that it is composed of two plane waves propagating 
in the x-y plane and crossing the glide plane 9 (y = 0) at the angle IcosC' a in the 
Burgers vector direction. In  accordance with equation (15) both waves undergo the 
phaseshift e x p ( 2 ~ l p )  when crcssing 9. They a!so havs the re!ative ph~seshift 
exp(2ip cos-' a). 

One may also be interested in the exact value of the integral (19) for arbitrary s. 
Using formulae from Prudnikov et a/ (1983) it is possible to express it through the 
Whittaker functions W,,(z) and M , , B ( ~ ) .  The vibrational component when (a1 > 1 
reads (for U > 0) 

-texp(-ip~r/2)1,(a, p, U )  = sin(?rs/a)r [;ysj ( d  p c s - 1 )  U-' 

du U 

= sin[~r(2p + s)/2]r 
du U 

x W - , / 2 , ( r + . - , ) / 2 ( U + ) M ~ , 2 , , ~ + ~ - ~ ) / 2 ( u - )  U<-l  

U*- u[a i ( u 2 -  1)'/2] r [ ,XI = r(x)/r(Y). 

One has to substitute equation (21) into equation (18) to obtain the quantity Z,.(& 9) .  
In contrast to vibrating modes encountered in Lifshits and Kosevitch (1966), Maradudin 
(1970) and Ninomiya (1970) which are located both in the lattice near the defect line 
and in the momentum space these new vibrating modes are located near the plane D 
and their spectrum fits the Brillouin zone well (see equation ( I t ) ) .  

The p dependence of the physical modes is quite complicated and has nothing to 
do with the orbital momentum. For single-valued derivatives of the map (6) itfollows 
that p is an eigenvaiue of the image of the momentum operaior (-idid+) on 'V' under 
map (6). Being the superposition of rotations and dilatations on D the momentum 
operator has position-dependent coefficients which are not possible to express even 
in elementary functions. So in the base of the bundle V(T(1))p is also the integral of 
motion; however, its geometrical meaning in terms of D is not transparent. 

In Serebrjany (1990) we speculated (using the Born approximation) that the edge 

The present result shows that there is no scattering at all in this case. Indeed, due to 
a threshold behaviour of equation (19) the scattering problem for the phonon mode 
is effectively one dimensional (along the y-axis). Each plane wave in equation (18) 
does not diminish its amplitude, but just acquiring the phaseshift when crossing the 

disioeaiion may pradui.e muie efei-iiv.e so.ui,: scatieiiiig iii iOiitiasi to a jciew 
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line y = 0. In contrast to the two-dimensional case such a phase multiple for a partial 
wave does not lead to scattering. 

From the considerations above it is clear that our modes show all the features 
pertinent to waves propagating in a periodic potential. The background periodic 
structure is the system of glide planes introduced on the covering apace 2 by the map 
(9 )  and periodicity entered the wavefunctions through the automorphic projection 
(17). One has the band structure for p: the ‘allowed’ values when a phonon propagates 
freely are thin strips centred on pure numbers. For all other ’forbidden’ values of p 
phonons turns out to be located on 3. Modes are not scattered by the glide plane and 
acquire only a phaseshift when crossing it in accordance to a Bloch theorem. A priori 
one may expect that interference effects like this are negligible for elementary excitations 
in condensed media. Our calculations show that the effect may be well strong. 

Summarizing one may say that the TI gives rise to quite complex modes exhibiting 
rather unconventional behaviour both as functions of momenta and space variables. 
As is evident the above analysis may be applied to the Schrodinger equation for 
electrons in the tight binding model ( r i  la Kawamura) showing that there will be no 
scattering, in contrast to a screw dislocation. However, the edge dislocation exerts an 
electric field upon an orbiting charged particle. So the TI effect (or its absence) will 
be spoiled. Still, one may hope to observe anisotropy in the metal conductivity along 
and across the glide planes in a sample containing parallel dislocation lines. 

References 

Avron G E, Raveh A and Zur B 1988 Reo. Mod. Phys. 60 873 
Banach R a n d  Dowker J S 1979 3. Phys. A: Math. Gen. 12 2527 
Bateman H and Erdelyi A 1953 Higher Transcendental Funerions vols I ,  2 (New York: McGraw-Hill) 
Berry M V 1984 B o c ,  R. Soc. London A 392 45 
Bilby B A, Bullough R a n d  Smith E 1955 h o e .  R. Soc. London A 231 263 
Bird D M and Preston A R 1988 Phys. Reo. Lett. 61 2863 
Cadic A and Edelen D G B 1983 Lecture Notes in Physics 174 (Berlin: Springer) 
Dowker J S 1990 The Formation and Euolution oJCormic Strings, ed G Gibbons, S Hawking and T Vachaspati 

Eguchi T, Gilkey P B and Hansan A J 1980 Phys. Rep. 66 213 
Hart N E 1983 Geomerrie Quantiiorion in Action (Dordrecht: Reidel) 
Israel W 1977 Phyr. Reo. D IS 395 
Kawamura K 1978a Z. Phys. B 29 101 
- 1978b Z. Phys. B 30 1 
Landau L D and Lifshits E M 1987 The Theory of Elasticity (Moscow: Nauka) in Russian 
Lifshits I M and Kosevitch A M 1966 Rep. Bog. Phyr. 29 217 
Maradudin A A 1970 Fundamenrol Aspects oJDislacotion Theory (Nat. Bur. Stand. (US) Spec. h b l .  317, 

VI) p 205, ed J A Simmons, R de Wit and R Bullaugh (Washington, DC: National Bureau of Standards) 
Ninomiya 2 1970 Fundomental Aspects oJDirlocorion Theory (Nat. Bur. Stand. (US) Spec. h b l .  317, VI) 

~ 3 1 5 .  ed J A Simmons, R de Wit and R Bullough (Washington, DC: National Bureau of Standards) 
Olariu S and Popescu I L 1985 Re”. Mod. Phys. 57 339 
Prudnikov A P, Brychkov Y A and Marichev 0 I 1983 lntegralr and Series. Transcendenid Functions 

Scott P 1983 Bull. London Marh. Soc. IS (pan 5. N 56) 401-87 
Serebrjany E M 1990 Theor. Marh. Phys. 83 428 
- 1991 Theor. Math. Phys. 86 81 
Vilenkin A 1985 Phys. Rep. 121 263 

(Cambridge: Cambridge University Press) p 251 

(Moscow: Nauka) in Russian 


